a) \(\left(x+2\right)\left(x^2-4x+4\right)-\left(x^3+2x^2\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-4x+4\right)-x^2\left(x+2\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-4x+4-x^2\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(4-4x\right)=5\)
\(\Leftrightarrow4x-4x^2+8-8x=5\)
\(\Leftrightarrow-4x^2-4x+3=0\)
\(\Leftrightarrow4x^2+4x-3=0\)
\(\Leftrightarrow4x^2-2x+6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x=\left\{\frac{1}{2};-\frac{3}{2}\right\}\)
b) \(6x^2-6x\left(-2+x\right)=36\)
\(\Leftrightarrow6x^2+12x-6x^2=36\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=3\)
Vậy x = 3
c) \(\left(x+2\right)^2+\left(x-3\right)^2-2\left(x-1\right)\left(x+1\right)=9\)
\(\Leftrightarrow x^2+4x+4+x^2-6x+9-2\left(x^2-1\right)=9\)
\(\Leftrightarrow2x^2-2x+13-2x^2+2=9\)
\(\Leftrightarrow15-2x=9\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
Vậy x = 3
d) \(\left(x+5\right)^2-9=0\)
\(\Leftrightarrow\left(x+5\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=3^2\\\left(x+5\right)^2=\left(-3\right)^2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+5=3\\x+5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-8\end{matrix}\right.\)
Vậy x ={-2; -8}
e) \(\left(x-2\right)^3=x^3+6x^2=7\) (Câu này sai đề thì phải! Mình sửa lại đề, có gì không giống với đề của bạn thì ib mình sửa nha!)
\(\left(x-2\right)^3-x^3+6x^2=7\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=7\)
\(\Leftrightarrow12x-8=7\)
\(\Leftrightarrow12x=15\)
\(\Leftrightarrow x=\frac{5}{4}\)
Vậy \(x=\frac{5}{4}\)
#Chúc bạn học tốt!