Dùng phương pháp giảm bậc đê! Bậc cao kiểu này ai giải nổi!!
\(\left(x-9\right)^{1000}+\left(x-100\right)^{2000}=1\)
\(\Leftrightarrow\left(x-9\right)^{1000}+\left[\left(x-100\right)^2\right]^{1000}=1\)
\(\Leftrightarrow\left(x-9\right)+\left(x-100\right)^2=1\)
Suy ra không có x nào thỏa mãn
vì (x-9)1000có số mũ chẵn
(x-100)2000có số mũ chẵn
suy ra cả hai thừa số trên sẽ ko âm
vậy để (x-9)1000+(x-100)2000=1 ta có 2 trường hợp
th1: (x-9)1000=1;(x-100)2000=0
vậy x sẽ ko thỏa mãn cả 2 điều kiện trên
th2:(x-9)1000=0;(x-100)2000=1
vậy x sẽ ko thỏa mãn cả hai điều kiện
vậy x ko có kết quả
Đề sai đúng ko :vvv
\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}=1\)
+) Với \(x=99\)\(;\)\(x=100\) thì \(VT=1\) nên \(x=99\) và \(x=100\) là nghiệm của pt
+) Với \(x< 99\) thì \(\left(x-99\right)^{1000}>0\)\(;\)\(\left(x-100\right)^{2000}>1\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}>1\) ( pt vô nghiệm )
+) Với \(x>100\) thì \(\left(x-99\right)^{1000}>1\)\(;\)\(\left(x-100\right)^{2000}>0\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}>1\) ( pt vô nghiệm )
+) Với \(99< x< 100\) thì \(0< x-99< 1\)\(;\)\(-1< x-100< 0\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}< \left|x-99\right|=x-99\) và \(\left(x-100\right)^{2000}< \left|x-100\right|=100-x\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}< x-99+100-x=1\) ( pt vô nghiệm )
Vậy \(x=99\) và \(x=100\) là nghiệm của phương trình
Chúc bạn học tốt ~
mới có lớp 7 mà phương trình gì ít nhất bạn cũng phải làm theo đúng cách của mỗi khối chứ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!