ĐKXĐ: `x>=0`
`a,3\sqrt(4x)<sqrt9`
`<=>6sqrt(x)<3`
`<=>sqrtx<1/2`
`=>x<1/4` kết hợp với ĐKXĐ có `0<=x<1/2`
KL....
`b, 4\sqrt(8x)>=2`
`<=>\sqrt(8x)>=1/2`
`=>8x>=1/4`
`<=>x>=1/32(TMĐK)`
KL...
ĐKXĐ: `x>=0`
`a,3\sqrt(4x)<sqrt9`
`<=>6sqrt(x)<3`
`<=>sqrtx<1/2`
`=>x<1/4` kết hợp với ĐKXĐ có `0<=x<1/2`
KL....
`b, 4\sqrt(8x)>=2`
`<=>\sqrt(8x)>=1/2`
`=>8x>=1/4`
`<=>x>=1/32(TMĐK)`
KL...
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)
Tìm x khi
a) \(\sqrt{50x-25}+\sqrt{8x-4}-3\sqrt{x}=\sqrt{72x-36}-\sqrt{4x}\)
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
rút gọn các biểu thức sau:
a) \(A=\sqrt{x^2+8x+16}+\sqrt{x^2-8x+16}Với-4\le x\le4\)\(x\le4\)
b) \(B=\sqrt{9x^2-6x+1}+\sqrt{4x^2-12x+9}\)
c) \(C=\sqrt{x-6\sqrt{x}+9}-\sqrt{4x+4\sqrt{x}+1}\)
d) \(D=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
BẠN NÀO LÀM ĐÚNG MK TIK NHÉ, CAMON TRC
giải pt\(\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{4x^2-12x+9}=2x-3\)
\(\left(1\right)\sqrt{x^2-9}-2\sqrt{x-3}=0\)
\(\left(2\right)\sqrt{4x+1}-\sqrt{3x-4}=1\)
\(\left(3\right)\sqrt{x^2-10x+25}=5-x\)
\(\left(4\right)\sqrt{x^2-8x+16}=x+2\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
Tìm x không am biết
a) \(\sqrt{x}\)=21
b) 3\(\sqrt{x}\)=18
c) \(\sqrt{x}\) < hoặc = \(\sqrt{5}\)
d) 3\(\sqrt{2x}\)>9