Để x2 - 8 / x - 1 thuộc Z thì x2 - 8 chia hết cho x - 1
=> x2 - x + x - 1 - 7 chia hết cho x - 1
=> x . (x - 1) + (x - 1) - 7 chia hết cho x - 1
=> (x - 1) . (x + 1) - 7 chia hết cho x - 1
Vì (x - 1) . (x + 1) chia hết cho x - 1 nên 7 chia hết cho x - 1
Do x thuộc Z nên x - 1 thuộc Z => x - 1 thuộc { 1 ; -1 ; 7 ; -7}
=> x thuộc { 2 ; 0 ; 8 ; -6}
Vậy x thuộc [ 2 ; 0 ; 8 ; -6}
Để x2 - 8 / x - 1 thuộc Z thì x2 - 8 chia hết cho x - 1
=> x2 - x + x - 1 - 7 chia hết cho x - 1
=> x . (x - 1) + (x - 1) - 7 chia hết cho x - 1
=> (x - 1) . (x + 1) - 7 chia hết cho x - 1
Vì (x - 1) . (x + 1) chia hết cho x - 1 nên 7 chia hết cho x - 1
Do x thuộc Z nên x - 1 thuộc Z => x - 1 thuộc { 1 ; -1 ; 7 ; -7}
=> x thuộc { 2 ; 0 ; 8 ; -6}
Vậy x thuộc [ 2 ; 0 ; 8 ; -6}