Đặt\(A=\dfrac{x+16}{\sqrt{x}+3}\left(đk:x\ge0\right)=\dfrac{x-3^2+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương:
\(A=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}-6=2.5-6=4\)
\(minA=4\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow x=4\)