\(2x+1⋮x-1\)
=>\(2x-2+3⋮x-1\)
=>\(3⋮x-1\)
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
2x+1⋮x−12x+1⋮x-1
⇔(2x−2)+3⋮x−1⇔(2x-2)+3⋮x-1
⇔2(x−1)+3⋮x−1⇔2(x-1)+3⋮x-1
Mà x−1⋮x−1x-1⋮x-1
⇒2(x−1)⋮x−1⇒2(x-1)⋮x-1
⇒3⋮x−1⇒3⋮x-1
⇔x−1∈Ư(3)={±1;±3}⇔x-1∈Ư(3)={±1;±3}
⇔x∈{0;2;4;−2}⇔x ∈{0;2;4;-2}
Vậy x∈{0;±2;4}x ∈{0;±2;4} thì 2x+1⋮x−1
2x + 1 = 2x - 2 + 3 = 2(x - 1) + 3
Để (2x + 1) ⋮ (x - 1) thì 3 ⋮ (x - 1)
⇒ x - 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-2; 0; 2; 4}