\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2013}{4030}\)
\(\frac{1}{x+1}=\frac{1}{2015}\)
=>x+1=2015
=>x=2014
đáp số:x=2014
ai k mk mk sẽ k lại ( nhớ k mk nha mk thank nhiều)^^