Lời giải:
\(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}=\frac{25-24}{24.25}+\frac{26-25}{25.26}+...+\frac{30-29}{29.30}\)
\(=\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\)
\(=\frac{1}{24}-\frac{1}{30}=\frac{1}{120}\)
Vậy:
\(\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(1+x:\frac{1}{3}=-4\)
\(x:\frac{1}{3}=-5\)
\(x=-15\)
\(\left(\dfrac{1}{24.25}+\dfrac{1}{25.26}+...+\dfrac{1}{29.30}\right).120+x:\dfrac{1}{3}=-4\)
\(\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{29}-\dfrac{1}{30}\right).120+x:\dfrac{1}{3}=-4\)
\(\left(\dfrac{1}{24}-\dfrac{1}{30}\right).120+x:\dfrac{1}{3}=-4\)
\(\dfrac{1}{120}.120+x:\dfrac{1}{3}=-4\)
\(1+x:\dfrac{1}{3}=-4\)
\(x:\dfrac{1}{3}=-4-1\)
\(x:\dfrac{1}{3}=-5\)
\(x=-5.\dfrac{1}{3}\)
\(x=\dfrac{-5}{3}\)