a
\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
b
x^3 chứ: )
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)