\(a>\)\(\left(x+2\right)\) thuộc \(Ư\left(20\right)\)
\(\left(x+1\right)\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}\)
\(+>x+1=1\)
\(\Rightarrow x=0\)
\(+>x+1=2\)
\(\Rightarrow x=1\)
\(+>x+1=4\)
\(\Rightarrow x=3\)
\(+>x+1=5\)
\(\Rightarrow x=4\)
\(+>x+1=10\)
\(\Rightarrow x=9\)
\(+>x+1=20\)
\(\Rightarrow x=19\)
Vậy \(x\in\left\{0;1;3;4;9;19\right\}\)
\(b>\left(x-2\right)\) là ước của 6
\(\left(x-2\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
\(+>x-2=1\)
\(\Rightarrow x=3\)
\(+>x-2=2\)
\(\Rightarrow x=4\)
\(+>x-2=3\)
\(\Rightarrow x=5\)
\(+>x-2=6\)
\(\Rightarrow x=8\)
Vậy \(x\in\left\{3;4;5;8\right\}\)
\(c>\left(2x+3\right)\) là \(Ư\left(10\right)\)
\(\left(2x+3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
\(+>2x+3=1\)
\(\Rightarrow x=-1\)
\(+>2x+3=2\)
\(\Rightarrow x=-\dfrac{1}{2}\)
\(+>2x+3=5\)
\(\Rightarrow x=1\)
\(+>2x+3=10\)
\(\Rightarrow x=\dfrac{7}{2}\)
Vậy \(x\in\left\{-1;-\dfrac{1}{2};1;\dfrac{7}{2}\right\}\)