a: Sửa đề: \(\left(x-3\right)^3-x\left(x^2-1\right)+9x^2=4\)
=>\(x^3-9x^2+27x-27-x^3+x+9x^2=4\)
=>28x=31
=>\(x=\dfrac{31}{28}\)
b: \(\left(x+2\right)^3-\left(x-2\right)^3-4x\left(3x-1\right)=-8\)
=>\(x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)-12x^2+4x=-8\)
=>\(x^3-6x^2+16x+8-x^3+6x^2-12x+8=-8\)
=>4x+16=-8
=>4x=-24
=>x=-6
c: Đặt x-2018=a; x-2020=b
=>a+b=x-2018+x-2020=2x-4038
\(\left(x-2018\right)^3+\left(x-2020\right)^3+\left(4038-2x\right)^3=0\)
=>\(a^3+b^3-\left(a+b\right)^3=0\)
=>\(\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)
=>-3ab(a+b)=0
=>ab(a+b)=0
=>(x-2018)(x-2020)(4038-2x)=0
=>\(\left[{}\begin{matrix}x-2018=0\\x-2020=0\\4038-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=2020\\x=2019\end{matrix}\right.\)