xyz=2y*4z/3x
xyz*3x=8yz
3x2=8
x2=8/3
x=\(\sqrt{\frac{8}{3}}\)
xyz=2y*4z/3x
xyz*3x=8yz
3x2=8
x2=8/3
x=\(\sqrt{\frac{8}{3}}\)
cho a,b,c>0 thỏa mãn : \(\frac{1}{x+1}+\frac{35}{35+2y}\le\frac{4z}{4z+57}\)
tìm min xyz
. Cho x,y,z > 0. Tim min của A =\(4.\left(x^2+y^2+z^2\right)+\dfrac{441}{x+2y+4z}\)
Cho x,y,z t/m: xy+yz+xz=xyz
Tìm GTLN:
\(\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\)
Cho x;y;z > 0 thỏa mãn xyz = 2
CMR: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\le\frac{1}{2}\)
Tim x,y biet:2xy^2+x+y+1=x^2+2y^2+xy
cho x^2+y^2+z^2=3 a cmr x^2y+y^2z+z^2x=<2+xyz b tim max min x/y+2+y/z+2+z/x+2
Cho x,y,z la cac so thuc duong thoa man xyz=2
Chung minh rang:\(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\le\frac{1}{2}\)
tim x biet 3x=5y+35
Cho x , y , z , > 0 . CMR \(3x+2y+4z\ge\sqrt{xy}+3\sqrt{yz}+5\sqrt{zx}\)