`x^3 + 27 = (x + 3)(x + 5)`
`x^3 + 3^3 = (x + 3)(x + 5)`
`(x + 3)(x^2 - 3x + 9) = (x + 3)(x + 5)`
`(x + 3)(x^2 - 3x + 9) - (x + 3)(x + 5) = 0`
`(x + 3)[(x^2 - 3x + 9) - (x + 5)]=0`
`(x + 3)(x^2 - 3x + 9 - x - 5) = 0`
`(x + 3)(x^2 - 4x + 4)= 0`
`(x + 3)(x -2)^2 = 0`
`x + 3 = 0` hoặc `(x - 2)^2 = 0`
`x = 0 - 3` hoặc `x - 2 = 0`
`x = -3` hoặc `x=2`
Vậy: `x=-3;x=2`