câu hỏi là :
\(\frac{x}{2018}+\frac{x+2}{1010}+x-2021=0\)
\(\frac{x}{2018}+\frac{x+2}{2018}+x-2021=0\)
\(\frac{x}{2018}+\frac{x+2}{2018}+x=0+2021\)
\(\Leftrightarrow\frac{1}{2018}x+\frac{x}{2018}+\frac{2}{2018}+x=2021\)
\(\Leftrightarrow\frac{1}{2018}x+\frac{1}{2018}x+\frac{1}{1009}+x=2021\)
\(\Leftrightarrow x\left(\frac{1}{2018}+\frac{1}{2018}+1\right)+\frac{1}{1009}=2021\)
\(\Leftrightarrow\frac{2020}{2018}x+\frac{1}{1009}=2021\)
\(\Leftrightarrow\frac{2020}{2018}x=2021-\frac{1}{1009}\)
\(\Leftrightarrow\frac{2020}{2018}x=\frac{4060188}{1009}\)
\(\Leftrightarrow x=\frac{4060188}{1009}\div\frac{2020}{2018}\)
\(\Leftrightarrow x=\frac{4060188}{1009}\times\frac{2018}{2020}\)
\(\Leftrightarrow x=\frac{8120376}{2020}\)