tìm x biết \(\sqrt{2x}=5\) khi đó
kết quả của \(\sqrt{\dfrac{0,25}{9}}\) bằng
kết quả của \(\sqrt{5a}.\sqrt{45a}\) a lớn hơn hoặc bằng 0
kết quả của\(2y^2\) \(\sqrt{\dfrac{x^4}{4y^2}}\)
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
rút gọn
a, \(\dfrac{x}{y}\sqrt{\dfrac{x^2}{y^4}}\) với x>0, y khác 0
b, \(2y^2\sqrt{\dfrac{x^4}{4y^2}}\) với y<0
Cho ba số thực dương x, y, z thỏa mãn: \(x+2y+3z=2\). Tìm GTLN của biểu thức: \(S=\sqrt{\dfrac{xy}{xy+3z}+}\sqrt{\dfrac{3yz}{3yz+x}+}\sqrt{\dfrac{3xz}{3xz+4y}}\)
Giải hệ phương trình:
a,\(\left\{{}\begin{matrix}\sqrt{x+y}\left(\sqrt{y}+1\right)=\sqrt{x^2+y^2}+2\\x\sqrt{y-1}+y\sqrt{x-1}=\dfrac{x^2+4y-4}{2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Cho biểu thức:
P=(\(\dfrac{1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-4}{2\sqrt{x}-x}\)):(\(\dfrac{2+\sqrt{x}}{\sqrt{x}}\)-\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\))
a)Tìm điều kiện của x để P có nghĩa
b)Rút gọn P
c)Tính giá trị của P khi x=\(\dfrac{3-\sqrt{5}}{2}\)
Tìm GTNN của biểu thức :
D = \(x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\) (x ≥ 1/2, y ≥ 3/4)
Helppp!!! :(
11. P=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right);\dfrac{x+5\sqrt{x}+6}{x-4}\)
a.rút gọn
b. tính giá trị P khi x=\(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
c. tìm x để P=2
Tìm GTNN
a)\(\sqrt{x-2\sqrt{x-3}}\)
b)\(\sqrt{x^{2}+2y^{2}-6x+4y+11 }+\sqrt{x^{2}+3y^{2}+2x+6y+4 }\)