Giải tạm trong câu này chứ không thấy đề ở đâu hết. Với n dương
So sánh \(\frac{n}{n+3};\frac{n+1}{n+2}\)
Ta có: \(\frac{n}{n+3}< \frac{n}{n+2}\) (vì cùng tử nên mẫu bé hơn thì lớn hơn) (1)
Ta lại có: \(\frac{n}{n+2}< \frac{n+1}{n+2}\) (vì cùng mẫu nên tử lớn hơn thì lớn hơn) (2)
Từ (1) và (2) \(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
Ô hay! giải phương trình có phải C/M bất đẳng thức đâu.
Lớp 6 khoai quá
hd: TÁCH SỐ HẠNG mẫu tạo các phân số đối;
\(\frac{1}{1.2.3.4}=\frac{1}{6}\left[\frac{1}{1}-\frac{3}{2}+\frac{3}{3}-\frac{1}{4}\right]\)
\(\frac{1}{2.3.4.5}=\frac{1}{6}\left[\frac{1}{2}-\frac{3}{3}+\frac{3}{4}-\frac{1}{5}\right]\)
\(\frac{1}{3.4.5.6}=\frac{1}{6}\left[\frac{1}{3}-\frac{3}{4}+\frac{3}{5}-\frac{1}{6}\right]\)
\(\frac{1}{4.5.6.7}=\frac{1}{6}\left[\frac{1}{4}-\frac{3}{5}+\frac{3}{6}-\frac{1}{7}\right]\)
\(\frac{1}{5.6.7.8}=\frac{1}{6}\left[\frac{1}{5}-\frac{3}{6}+\frac{3}{7}-\frac{1}{8}\right]\)
....
....
từ số hạng thứ 4 xuất hiện các cặp đối khi n tăng lên--> tự bạn --> nội suy--phần giữa--> triệt tiêu.
Tổng quát:
\(\frac{1}{n.\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{6}\left[\frac{1}{n}-\frac{3}{n+1}+\frac{3}{n+2}-\frac{1}{n+3}\right]\)