a) \(\left(5x-1\right)\left(\frac{2x-1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{2}\end{cases}}\)
b) \(6\left(x-1\right)+2x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\6+2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
a) \(\left(5x-1\right)\cdot\frac{2x-1}{3}=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\\frac{2x-1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=1\\2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(x=\frac{1}{5};x=\frac{1}{2}\)
b) 6(x-1)+2x(x-1)=0
<=> (x-1)(6+2x)=0
<=> \(\orbr{\begin{cases}x-1=0\\6+2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Vậy x=1; x=-3