Đặt VT=A
\(2A=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{x\left(x+2\right)}\)
\(2A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+2}\)
\(A=\left(\frac{1}{5}-\frac{1}{x+2}\right):2\)
Thay A vào VT ta đc:
\(\left(\frac{1}{5}-\frac{1}{x+2}\right):2=\frac{7}{95}\)
\(\frac{1}{5}-\frac{1}{x+2}=\frac{14}{95}\)
\(\frac{1}{x+2}=\frac{1}{19}\)
\(\Rightarrow x+2=19\)
\(\Rightarrow x=17\)
\(\text{Đặt VT=A }\)
\(2A=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{x\left(x+2\right)}\)
\(2A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+2}\)
\(A=\left(\frac{1}{5}-\frac{1}{x+2}\right):2\)
\(\text{Thay A vào VT ta đc: }\)
\(\left(\frac{1}{5}-\frac{1}{x+2}\right):2=\frac{7}{95}\)
\(\frac{1}{5}-\frac{1}{x+2}=\frac{14}{95}\)
\(\frac{1}{x+2}=\frac{1}{19}\)
\(\Rightarrow x+2=19\)
\(\Rightarrow x=17\)