Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]
Cho hàm số y=x²-2-3x,đồ thị là parabol(P) a/Xác định tọa độ đỉnh,trục đối xứng.Lập bảng biến thiên và vẽ đồ thị b/gọi A là điểm thuộc(P) và có hoành độ bằng 5. Tìm phương trình đường thẳng (d) đi qua 2 điểm A,I
a. Xét dấu của biểu thức f(x) = 2x(x+2)-(x+2)(x+1)
b. Lập bảng biến thiên và vẽ trong cùng một hệ tọa độ vuông góc đồ thị của các hàm số : y = 2x(x+2) ( C1 ) và y = (x+2)(x+1)(C2)
Tính tọa độ giao điểm A và B của (C1) và (C2).
c. Tính các hệ số a, b, c để hàm số y = ax2 + bx + c có giá trị lớn nhất bằng 8 và độ thị của nó đi qua A và B.
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
Hàm số bậc hai y = a x 2 + b x - 6 có đồ thị đi qua hai điểm A(1; 1) và B(2; 2) là
A. y = 2 x 2 + 5x - 6
B. y = -3 x 2 + 10x - 6
C. y = -2 x 2 + 8x - 6
D. y = 3 x 2 + 3x - 6
Câu 36. Đồ thị hàm số y={\(\dfrac{2x+1}{x^2-3}\) \(\dfrac{khix\le2}{khix>2}\)đi qua tọa độ có điểm
A.
(0;1)
B.
(−3;0)
C.
(0;3)
D.
(0; 3− )
Biết rằng đồ thị hàm số y = ax + b đi qua điểm E (2; −1) và song song với đường thẳng ON với O là gốc tọa độ và N (1; 3). Tính giá trị biểu thức S = a 2 + b 2
A. S = -4
B. S = -40
C. S = -58
D. S = 58
Tọa độ giao điểm của đồ thị hai hàm số y = x2 - 2x +3 và y = x2 + 2x -1
A.(1;2) B.(0;4) C.(-1;6) D.(-1;-2 )