sau khi bỏ dấu ngoặc (thực hiện phép nhân) ta sẽ được đa thức
P(x)=anxn+an-1xn-1+...+a1x+a0 (với n=2(100+1000)=2200
Thay x=1 thì giá trị của đa thức là P(1) đúng bằng tổng các hệ số
an+an-1+....+a1+a0
ta có : P(1)=(12-2.1+2)100.(11-3.1+3)1000=1
Vậy tổng các hệ số là 1
Tổng các hệ số đa thức thu được sau khi bỏ dấu ngoặc chính là giá trị của bieetr thức x=1
Ta có
\(\left(1^2-2.1+2\right)^{100}.\left(1^2-3.1+3\right)^{1000}\)
\(=1^{100}.1^{1000}\)
\(=1\)
Vậy tổng của các hệ số đa thức là 1
!
1+2+3 =3+3
=6