Đáp án C
Hoành độ giao điểm I của đồ thị hàm số y = 4 x 3 − 3 x và đường thẳng y = − x + 2 là nghiệm của PT:
4 x 3 − 3 x = − x + 2 ⇔ 4 x 3 − 2 x − 2 = 0 ⇔ x − 1 4 x 2 + 4 x + 4 = 0 ⇔ x = 1 ⇒ y = 1
Đáp án C
Hoành độ giao điểm I của đồ thị hàm số y = 4 x 3 − 3 x và đường thẳng y = − x + 2 là nghiệm của PT:
4 x 3 − 3 x = − x + 2 ⇔ 4 x 3 − 2 x − 2 = 0 ⇔ x − 1 4 x 2 + 4 x + 4 = 0 ⇔ x = 1 ⇒ y = 1
Tìm tọa độ giao điểm I của đồ thị hàm số y = 4 x 3 - 3 x với đường thẳng y = - x + 2
A. I(2;2)
B. I(2;1)
C. I(1;1)
D. I(1;2)
Gọi M, N là các giao điểm của đường thẳng y = x − 4 với đồ thị của hàm số y = − 2 x + 5 x − 2 . Tìm tọa độ trung điểm I của MN?
A. I 2 ; − 2
B. I 1 ; − 3
C. I 3 ; − 1
D. I − 2 ; 2
Cho hàm số có đồ thị y = x − 2 x + 2 có đồ thị (C). Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị (C)
A. I(-2;2)
B. I(-2;2)
C. I(2;1)
D. I(-2;1)
Gọi I là giao điểm hai đường tiệm cận của đồ thị hàm số y = 2 - x x - 1 . Tìm tọa độ của I
A. I(1;-1)
B. I(-1;-1)
C. I(-1;1)
D. I(1;1)
Gọi I là giao điểm hai đường tiệm cận của đồ thị hàm số y = 2 - x x - 1 . Tìm tọa độ của I
A. I(1; -1)
B. I(-1; -1)
C. I(-1; 1)
D. I(1; 1)
Cho hàm số y = x + 3 x − 2 có đồ thị C . Gọi I là giao điểm của hai đường tiệm cận của C . Khi đó tọa độ của điểm I là
A. I − 3 ; 0 .
B. I 1 ; 2 .
C. I 2 ; 1 .
D. I 0 ; − 3 2 .
Cho (C) là đồ thị của hàm số y = x - 3 x + 1 . Biết rằng, chỉ có hai điểm thuộc đồ thị (C) cách đều hai điểm A(2;0) và B(0;-2). Gọi các điểm đó lần lượt là M và N. Tìm tọa độ trung điểm I của đoạn thẳng MN.
A. I(-1;1)
B. I 0 ; - 3 2
C. I 0 ; 3 2
D. I(-2;2)
cho hàm số \(y=x^2\) và y = -2x+3
a, Vẽ đồ thị của hàm số trên cùng 1 hệ trục tọa độ.
b, Tìm tọa độ giao điểm của 2 đồ thị đó.
cho hàm số y = a/x ; a) xác định hệ số a biết đồ thị của nó đi qua điểm (-2;2) , b) vẽ đò thị hàm số đó và đường thẳng y = 2 trên cùng 1 hệ trục tọa độ Oxy ( đồ thị hàm số là đường cong hypebol) c) dựa vào đồ thị để tìm các giá trị của x sao cho 1/x<-2