Gọi I là giao điểm hai đường tiệm cận của đồ thị hàm số y = 2 - x x - 1 . Tìm tọa độ của I
A. I(1; -1)
B. I(-1; -1)
C. I(-1; 1)
D. I(1; 1)
Cho hàm số y = x + 3 x − 2 có đồ thị C . Gọi I là giao điểm của hai đường tiệm cận của C . Khi đó tọa độ của điểm I là
A. I − 3 ; 0 .
B. I 1 ; 2 .
C. I 2 ; 1 .
D. I 0 ; − 3 2 .
Cho hàm số y = x − 2 x + 1 . Xét các phát biểu sau đây
+) Đồ thị hàm số nhận điểm I − 1 ; 1 làm tâm đối xứng.
+) Hàm số đồng biến trên tập ℝ \ − 1 .
+) Giao điểm của đồ thị với trục hoành là điểm A 0 ; − 2
+) Tiệm cận đứng là y = 1 và tiệm cận ngang là x = − 1
Trong các phát biểu trên, có bao nhiêu phát biểu đúng?
A. 1
B. 3
C. 2
D. 4
Cho hàm số có đồ thị y = x − 2 x + 2 có đồ thị (C). Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị (C)
A. I(-2;2)
B. I(-2;2)
C. I(2;1)
D. I(-2;1)
Gọi I là giao điểm của hai đường tiệm cận của đồ thị hàm số y = 2 x - 3 x + 1 . Khi đó, điểm I nằm trên đường thẳng có phương trình
A. x + y + 4 = 0
B. 2 x - y + 4 = 0
C. x - y + 4 = 0
D. 2 x - y + 2 = 0
Cho hàm số y = x + 1 x - 1 có đồ thị (C). Gọi I là giao điểm của hai tiệm cận, M là một điểm thuộc (C). Tiếp tuyến tại M của (C) cắt hai tiệm cận tại A và B. Phát biểu nào sau đây là sai?
A. M là trung điểm của AB
B. Diện tích tam giác IAB là một số không đổi
C. Tích khoảng cách từ M đến hai tiệm cận là một số không đổi
D. Tổng khoảng cách từ M đến hai tiệm cận là một số không đổi
Cho hàm số y = 2 x - 1 2 x - 2 có đồ thị (C). Gọi M x 0 ; y 0 (với x 0 > 1 ) là điểm thuộc (C), biết tiếp tuyến của (C) tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho S ∆ O I B = 8 S ∆ O I A (trong đó O là gốc tọa độ, I là giao điểm hai tiệm cận). Giá trị của S = x 0 + 4 y 0 bằng
A. 8
B. 2
C. 17 4
D. 23 4
Cho hàm số y = x − 1 x − 3 . Xét các mệnh đề sau:
(1) Hàm số nghịch biến trên D = ℝ \ 3
(2) Đồ thị hàm số có một tiệm cận đứng là x=1, tiệm cận ngang là y=3.
(3) Hàm số đã cho không có cực trị
(4) Đồ thị hàm số nhận giao điểm I(3;1) của hai đường tiệm cận làm tâm đối xứng.
Chọn các mệnh đề đúng ?
A. (1), (3), (4)
B. (3), (4)
C. (2), (3), (4)
D. (1), (4)
Cho hàm số y = x + 2 x − 2 có đồ thị là (C). Gọi I là giao điểm hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng
A. 2 π
B. 8 π
C. 4 2 π
D. 4 π