\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)
Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)
Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)
Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)
Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)
cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2
Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2
cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ
Thạch ơi, cái bài này mk giải như thế đúng k?
quên, mk sửa lại 1 tí nhé
cứ như vậy tiếp dần thì ta chỉ có n=1;4 thì p mới là số nguyên tố, thì p=2;11
Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2;11
tôi học giỏi toán sai rồi phải sửa như thế này:
cứ như vậy tiếp dần thì ta chỉ co n=1;3 thì p mới là số nguyên tố, thì p=2;11
bạn ơi, bạn phải làm n>3 từ đó suy ra n=3k+1 hoặc n=3k+2 rồi thay vào là hợp số rồi mới kết luận
= 3 cũng đc mà
=> n=3
à mk nhầm ko phai dau