Cho hàm số y = 2 x 3 - 3 m x 2 + 3 ( 5 m 2 + 1 ) x - 3 s i n x với m là tham số thực. Tìm tập hợp tất cả các giá trị của m để hàm số đồng biến trên (l;3).
A . m ≥ 1
B . m ≤ - 1
C . m > 0
D . m ∈ R
Tìm tất cả giá trị thực của tham số m để hàm số y = x 3 3 + ( m + 1 ) x 2 + ( 3 m + 1 ) x + 2 đồng biến trên R
A. 0 ≤ m ≤ 1
B. m ≥ 1 m ≤ 0
C. 0 < m < 1
D. m > 1 m < 0
Cho hàm số y = 1 3 x 3 + 2 x 2 + ( m + 2 ) x - m . Tìm tập hợp S tất cả các giá trị thực của tham số m để hàm số đồng biến trên ℝ
A. S = ( - ∞ ; 2 ]
B. S = ( - ∞ ; 2 )
C. S = [ 2 ; + ∞ )
D. S = ( 2 ; + ∞ )
Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x 2 + 3 - m ( x + 1 ) đồng biến trên khoảng ( - ∞ ; + ∞ )
A. [ 1 ; + ∞ )
B. [ - 1 ; 1 ]
C. ( - ∞ ; - 1 ]
D. ( - ∞ ; 1 )
Tìm tất cả các giá trị tham số m để hàm số y = - 1 3 x 3 + ( m - 1 ) x 2 + ( m + 3 ) x - 4 đồng biến trên (0;3)
A. m ≥ 1 7
B. m ≥ 4 7
C. m ≥ 8 7
D. m ≥ 12 7
Tìm tất cả các giá trị của tham số m để hàm số y = x + m ( sin x + c o s x ) đồng biến trên R
A. m < - 1 2 ∪ m > 1 2
B. - 1 2 ≤ m ≤ 1 2
C. - 3 < m < 1 2
D. m ≤ - 1 2 ∪ m ≥ 1 2
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = m cos x + 1 cos x + m đồng biến trên khoảng 0 ; π 3
A. - 1 ; 1
B. - ∞ ; - 1 ∪ 1 ; + ∞
C. [ - 1 ; - 1 2 )
D. - 1 ; - 1 2
Tìm tất cả các giá trị nguyên dương nhỏ hơn 5 của tham số m để hàm số y = 1 3 x 3 + ( m - 1 ) x 2 + ( 2 m - 3 ) x - 2 3 đồng biến trên khoảng (1;+∞)
A. 5
B. 3
C. 6
D. 4
Tìm tất cả các giá trị thực của tham số m để hàm số y = − x 3 + 3 x 2 + mx − 3 nghich biến trên (2;+∞).
A. m ≤ 0
B. m ≥ 1
C. m < 0
D. m > 1