Tất cả các giá trị thực của tham số m để hàm số y = x 5 5 – m x 4 4 + 2 đạt cực đại tại x=0 là
A. m > 0
B. m < 0
C. mÎR
D. Không tồn tại m
Tìm tất cả các giá trị thực của m để hàm số y = x 3 3 - ( m - 2 ) x 2 + ( 4 m - 8 ) x + m + 1 đạt cực trị tại các điểm x1, x2 sao cho x 1 < - 2 < - x 2
A. m ≥ 1
B. m > 1 2
C. m ≤ 2
D. m < 3 2
Tìm tất cả các giá trị của tham số thực m để hàm số y = 1 3 x 3 − m x 2 + m 2 − m + 1 x + 1 đạt cực đại tại điểm x=1
A.m=2
B.m=3
C.m= -1
D. m=0
Tìm tất cả các giá trị thực của tham số m để hàm số y = 1 3 sin 3 x + m sin x + 2 m − 3 đạt cực đại tại x = π 3
A. không có giá trị m
B. m = 1
C. m = 2
D. m = − 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 − 1 2 m 2 + 1 x 2 + 3 m − 2 x + m đạt cực đại tại điểm x=1
A. m=-1
B. m=2
C. m=1
D. m=-2
Tìm tất cả giá trị thực của tham số m để hàm số y = m x 3 + 3 x 2 + 12 x + 2 đạt cực đại tại x = 2
A. -1
B. -3
C. 0
D. -2
Tìm tất cả các giá trị của tham số thực m để hàm số y = − x 3 − 2 x 2 + m x + 1 đạt cực tiểu tại điểm x = -1
A. m < -1
B. m ≠ − 1
C. m = -1
D. m > -1
Tìm tất cả các giá trị thực của tham số m để hàm số y = − 2 x 3 + 3 m x 2 − 1 đạt cực tiểu tại x= 0.
A. m > 0
B. m > 1 2
C. m<0
D. m < 1 2
Cho hàm số f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tìm tất cả các giá trị thực của tham số m để hàm số y=f(|x|) có 5 cực trị
A. - 10 < m < 5 4
B. - 2 < m < 5
C. - 2 < m < 5 4
D. 5 4 < m < 2