Đáp án C
Để hàm số có 2 tiệm cận ngang khi và chỉ khi lim x → ∞ y = a ∀ a ∈ ℝ
Ta có lim x → ∞ x + 1 m x 2 + 1 = lim x → ∞ 1 + 1 x m + 1 x 2 = 1 m . Để lim x → ∞ y xác định ⇔ 1 m xác định hay m>0
Đáp án C
Để hàm số có 2 tiệm cận ngang khi và chỉ khi lim x → ∞ y = a ∀ a ∈ ℝ
Ta có lim x → ∞ x + 1 m x 2 + 1 = lim x → ∞ 1 + 1 x m + 1 x 2 = 1 m . Để lim x → ∞ y xác định ⇔ 1 m xác định hay m>0
Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số y = x 2 x 2 − 2 x − m − x − 1 có hai tiệm cận đứng
A. m ≥ 4
B. − 5 < m ≤ 4
C. m > − 5
D. − 5 < m ≤ 4 m ≠ − 1
Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số y = x 2 x 2 − 2 x − m − x − 1 có hai tiệm cận đứng
A. m ≥ 4
B. − 5 < m ≤ 4
C. m > − 5
D. − 5 < m ≤ 4 m ≠ − 1
Cho hàm số y = f(x) thỏa mãn l i m x → - ∞ f x = - 1 và l i m x → + ∞ f x = m Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 1 f x + 2 có duy nhất một tiệm cận ngang.
A. m = -1
B. m = 2
C. m ∈ - 1 ; - 2
D. m ∈ - 1 ; 2
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y = 2 x - m - 1 x 2 + 1 x - 1 có đúng hai tiệm cận ngang?
A. m = 1
B. m ∈ 1 ; 4 ∪ 4 ; + ∞
C. m < 1
D. m > 1
Tìm tất cả giá trị của tham số m để đồ thị hàm số y = x - m x 2 - ( m + 1 ) x + m có hai tiệm cận
A. m ≠ 1
B. m ≥ 1
C. m ≤ 1
D. m ∈ ℝ
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = 2 x + 3 m x 2 + 1 có hai tiệm cận ngang
A. m > 0
B. m < 0
C. m = 0
D. Không tồn tại m
Tìm tất cả các giá trị của m sao cho đồ thị hàm số y = x + 1 m x 2 + 1 có 2 tiệm cận ngang
A. m = 0
B. m < 0
C. m > 0
D. Không có giá trị nào của m
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 1 x - m có tiệm cận đứng.
A. Với mọi m
B. m ≠ 0
C. m ≠ 1
D. m = 0
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x − 1 x − m có tiệm cận đứng
A. m = 0
B. Với mọi m
C. m ≠ 1
D. m ≠ 0