Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Tất cả các giá trị của tham số m để phương trình log m x = 2 log x + 1 có nghiệm là
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0
với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ ( - ∞ , 0 )
A. m > 2 + 2 3 3
B. m > 2 - 2 3 3
C. m ≥ 2 - 2 3 3
D. m ≥ - 2 - 2 3 3
Tìm tất cả các giá trị thực của tham số m để phương trình 2 cos 2 3 x + 3 − 2 m cos 3 x + m − 2 = 0 có đúng 3 nghiệm thuộc khoảng − π 6 ; π 3
A. − 1 ≤ m ≤ 1
B. 1 < m ≤ 2
C. 1 ≤ m ≤ 2
D. 1 ≤ m < 2
Tìm tất cả các giá trị của tham số m để phương trình 4 log 2 x 2 - log 1 2 x + m = 0 có nghiệm thuộc khoảng 0 ; 1
Cho phương trình m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0 . Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình đã cho có hai nghiệm thực x1, x2 thỏa 0 < x1 < 1 < x2
A. 2 ; + ∞
B. - 1 ; 2
C. - ∞ ; - 1
D. - ∞ ; - 1 ∪ 2 ; + ∞
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
Tìm tất cả các giá trị của tham số m để phương trình 4x+1- 2x+2 + m = 0 có nghiệm.
A. m ≤ 0
B. m ≥ 0
C. m ≤ 1
D. m ≥ 1
Tất cả các giá trị của tham số m để bất phương trình (3m+1).12x + (2 - m)6x + 3x < 0 có nghiệm đúng với mọi x > 0 là: