Tìm tất cả các giá trị thực của tham số m để hàm số y = − 2 x 3 + 3 m x 2 − 1 đạt cực tiểu tại x= 0.
A. m > 0
B. m > 1 2
C. m<0
D. m < 1 2
Tìm tất cả các giá trị của tham số m để hàm số y = 1 3 x 3 - m x 2 + m + 6 + x + 2017 * có 5 điểm cực trị.
A. m < - 2 ∪ m > 5
B. m > -6
C.m > 0
D.m > 3
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 4 − 2 m + 1 x 2 + m 2 − 1 đạt cực tiểu tại x = 0.
A. m<-1
B. m=-1
C. m ≤ − 1.
D. m ≤ − 1 m ≥ 1
Để đồ thị hàm số y = - x 4 - ( m - 3 ) x + 2 m + 1 có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
A. m ≤ 3
B. m < 3
C. m ≥ 3
D. m > 3
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 4 + m x 2 đạt cực tiểu tại x = 0
A. m = 0.
B. m > 0.
C. m ³ 0.
D. m £ 0.
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 4 + m x 2 đạt cực tiểu tại x = 0
A. m = 0
B. m > 0
C. m ≥ 0
D. m ≤ 0
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 4 + m x 2 đạt cực tiểu tại x = 0.
A. m ≥ 0
B. m > 0
C. m = 0
D. m ≤ 0
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 4 + m x 2 đạt cực tiểu tại x=0
A. m = 0
B. m > 0
C. m ≥ 0
D. m ≤ 0
Cho đồ thị hàm số y = a x 3 + b x 2 + c x + d có điểm cực đại là A(-2;2), điểm cực tiểu là B(0;-2). Tìm tất cả các giá trị của m để phương trình a x 3 + b x 2 + c x + d = m có 3 nghiệm phân biệt.
A. m > 2
B. m < - 2
C. - 2 < m < 2
D. m = 2 m = - 2
Tất cả các giá trị của tham số m để hàm số y = m - 1 x 4 đạt cực đại tại x = 0 là
A. m < 1.
B. m > 1.
C. không tồn tại m.
D. m = 1.