Đáp án C
Điều kiện: 1 − s inx 1 + s inx ≥ 0 ⇔ s inx ≠ -1 ⇔ x ≠ - π 2 ⇒ TXĐ: D = ℝ \ − π 2 + k 2 π , k ∈ ℤ
Đáp án C
Điều kiện: 1 − s inx 1 + s inx ≥ 0 ⇔ s inx ≠ -1 ⇔ x ≠ - π 2 ⇒ TXĐ: D = ℝ \ − π 2 + k 2 π , k ∈ ℤ
Cho sinα.cos(α+β) = sinβ với α+β ≠ π/2 + kπ,α ≠ π/2+lπ(k,l ϵ Z). Ta có:
A. tan(α+β)=2cotα
B. tan(α+β)=2cotβ
C. tan(α+β)=2tanβ
D.tan(α+β)=2tanα
Tập xác định của hàm số ( x 2 - 3 x + 2 ) π là:
A. R\{1;2}
B. (1;2)
C. ( - ∞ ; 1 ] ∪ [ 2 ; + ∞ )
D. - ∞ ; 1 ∪ 2 ; + ∞
Tập xác định của hàm số ( x 2 - 3 x + 2 ) π là
A. R \ { 1 ; 2 }
B. ( - ∞ ; 1 ) ∪ ( 2 ; + ∞ )
C. ( 1 ; 2 )
D. ( - ∞ ; 1 ] ∪ [ 2 ; + ∞ )
Cho hàm số y = f x liên tục trên ℝ và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình f sin x = 3 sin x + m có nghiệm thuộc khoảng 0 ; π . Tổng các phần tử của S bằng
A. -10
B. -8
C. -6
D. -5
Hình phẳng giới hạn bởi đồ thị hàm số y = e x . sin x và các đường thẳng x = 0, x = π, trục hoành. Một đường x = k cắt diện tích trên tạo thành 2 phần có diện tích bằng S 1 , S 2 sao cho 2 S 1 + 2 S 2 - 1 = 2 S 1 - 1 2 khi đó k bằng:
A. π 4
B. π 2
C. π 3
D. π 6
Hình phẳng giới hạn bởi đồ thị hàm số y = e x . s i n x và các đường thẳng x = 0 , x = π ,trục hoành. Một đường x = k cắt diện tích trên tạo thành 2 phần có diện tích bằng S 1 ; S 2 sao cho 2 S 1 + 2 S 2 - 1 = 2 S 1 - 1 2 khi đó k bằng:
A. π 4
B. π 2
C. π 3
D. π 6
Tập xác định của hàm số y = 2 x − x 2 − π là
A. 0 ; 2
B. − ∞ ; 0 ∪ 2 ; + ∞
C. − ∞ ; 0 ∪ 2 ; + ∞
D. 0 ; 2
Tập xác định của hàm số y = ( 2 x - x 2 ) - π là
A. 0 ; 1 2
B. (0; 2)
C. [0; 2]
D. - ∞ ; 0 ∪ 2 ; + ∞
Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn [0;π], các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và CD = 2 π /3. Độ dài của cạnh BC bằng
A. 2 2
B. 1 2
C. 1
D. 3 2
Cho hàm số f ( x ) = 1 + c o s x ( x - π ) 2 k h i x ≠ π m k h i x = π Tìm m để f(x) liên tục tại x = π
A. m = 1 4
B. m = - 1 4
C. m = 1 2
D. m = - 1 2