Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Tìm tập nghiệm S của bất phương trình l o g 1 2 ( x + 2 ) - l o g 1 2 x > l o g 2 ( x 2 - x ) - 1
A. S = 2 ; + ∞
B. S = 1 ; 2
C. S = 0 ; 2
D. S = ( 1 ; 2 ]
Tìm tập nghiệm S của bất phương trình ( 3 - 1 ) ( x + 1 ) ) > 4 - 2 3
A. S = [ 1 ; + ∞ )
B. S = ( 1 ; + ∞ )
C. S = [ - ∞ ; 1 ]
D. S = ( - ∞ ; 1 )
Tìm tập nghiệm S của bất phương trình log e π ( x + 1 ) < log e π ( 3 x − 1 )
A. S = − ∞ ; 1
B. S = 1 ; + ∞
C. S = 1 3 ; 1
D. S = − 1 ; 3
Tìm tập nghiệm S của bất phương trình log 0 , 2 x − 1 < log 0 , 2 3 − x .
A. S = − ∞ ; 3
B. S = 2 ; 3
C. S = 2 ; + ∞
D. S = 1 ; 2
Tìm tập nghiệm S của bất phương trình log 0 , 2 x − 1 < log 0 , 2 3 − x .
A. S = − ∞ ; 3
B. S = (2;3)
C. S = 2 ; + ∞
D. S = (1;2)
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x . Biết rằng x = 1 là một nghiệm của bất phương trình
A. S = − 2 ; 0 ∪ 1 3 ; 3
B. S = − 1 ; 0 ∪ 1 3 ; 2
C. S = − 1 ; 0 ∪ 1 3 ; 3
D. S = − 1 ; 0 ∪ 1 ; 3