Tìm tập nghiệm S của bất phương trình ( 3 - 1 ) ( x + 1 ) ) > 4 - 2 3
A. S = [ 1 ; + ∞ )
B. S = ( 1 ; + ∞ )
C. S = [ - ∞ ; 1 ]
D. S = ( - ∞ ; 1 )
Tìm tập nghiệm S của bất phương trình 3 - 1 x + 1 > 4 - 2 3
A. S=(-∞;1]
B. S=(-∞;1)
C. S=[1;+∞)
D. S=(1;+∞)
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Tìm tập nghiệm S của bất phương trình l o g 1 2 ( x + 2 ) - l o g 1 2 x > l o g 2 ( x 2 - x ) - 1
A. S = 2 ; + ∞
B. S = 1 ; 2
C. S = 0 ; 2
D. S = ( 1 ; 2 ]
Tìm tập hợp nghiệm S của bất phương trình l o g π 4 ( x 2 + 1 ) < l o g π 4 ( 2 x + 4 ) .
A. S = - 2 ; - 1
B. S = - 2 ; + ∞
C. S = 2 ; + ∞ ∪ - 2 ; - 1
D. S = 3 ; + ∞
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x . Biết rằng x = 1 là một nghiệm của bất phương trình
A. S = − 2 ; 0 ∪ 1 3 ; 3
B. S = − 1 ; 0 ∪ 1 3 ; 2
C. S = − 1 ; 0 ∪ 1 3 ; 3
D. S = − 1 ; 0 ∪ 1 ; 3
Tập nghiệm S của bất phương trình log 2 ( x - 1 ) < 3 là
A. (1;9)
B. (1;10)
C. (-∞;9)
D. (-∞;10)
Gọi S là tập nghiệm của phương trình log 5 ( x + 1 ) + log 5 ( x - 3 ) = 1 Tìm S
A. S = - 2 ; 4
B. S = - 1 + 13 2 ; - 1 - 13 2
C. S = 4
D. S = - 1 + 13 2
Tìm tập nghiệm S của bất phương trình log e π ( x + 1 ) < log e π ( 3 x − 1 )
A. S = − ∞ ; 1
B. S = 1 ; + ∞
C. S = 1 3 ; 1
D. S = − 1 ; 3