Đặt: A= 1/3 +1/6+1/10+…+2/x(x+1)
A x 1/2 = 1/2.3 + 1/3.4 + 1/4.5 +…+1/x(x+1)
A x1/2 = 1/2-1/3+1/3-1/4+1/4-1/5+…..+1/x-1/(x+1)
A x 1/2 = 1/2 – 1/(x+1)
A = (1/2 -1/x+1) : 1/2
A = 1 – 2/(x+1)
Như vậy ta có: 1-2/(x+1) = 1999/2001
Hay: 2/(x+1) = 1-1999/2001
2/(x+1) = 2/2001
Vậy x = 2000
Tích tớ nha!! Cáchgiải chính xác 100%
1/3+1/6+1/10+...+1/x(x+1)=1999/2001
1/2.[1/3+1/6+1/10+...+1/x(x+1)].2=1999/2001
[1/6+1/12+1/20+...+1/x(x+1)].2=1999/2001
[1/2.3+1/3.4+1/4.5+...+1/x.(x+1)].2=1999/2001
[1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1].2=1999/2001
(1/2-1/x+1).2=1999/2001
1/2-1/x+1=1999/2001:2=1999/2001.1/2=1999/4002
1/x+1=1/2-1999/4002
1/x+1=2001/4002-1999/4002==2/4002=1/2001
=>x+1=2001
=>x=2001-1=2000
Vậy x=2000
1/3 + 1/6 + 1/10 + ... + 1/x ( x +1 ) = 1999/2001
=> 2/6 + 2/12 + 2/20 + .. + 2/ x ( x+1 )= 1999/2001
=> 2 ( 1/6 + 1/12 + ..+ 1/ x ( x +1 ) ) = 1999/2001
=> 2 ( 1/2 x 3 + 1/ 3 x 4 + ... + 1/x ( x + 1 ) ) = 1999/2001
=> 2 ( 1/2 - 1/3 + 1/3 - 1/4 + .. + 1/x - 1/ ( x+1 ) ) = 1999/2001
=> 2 ( 1/2 - 1/ ( x+ 1 ) ) = 1999/2001 => 1/2 - 1/ ( x + 1 ) = 1999/2001 : 2
=> 1/ x + 1 = 1/2 - 1999/2001 : 2 = 1/2001 => x + 1 = 2001 => x = 2000
Đặt: A= 1/3 +1/6+1/10+…+2/x(x+1)
A x 1/2 = 1/2.3 + 1/3.4 + 1/4.5 +…+1/x(x+1)
A x1/2 = 1/2-1/3+1/3-1/4+1/4-1/5+…..+1/x-1/(x+1)
x 1/2 = 1/2 – 1/(x+1)
1/3+1/6+1/10+...+1/x(x+1)=1999/2001
1/2.[1/3+1/6+1/10+...+1/x(x+1)].2=1999/2001
[1/6+1/12+1/20+...+1/x(x+1)].2=1999/2001
[1/2.3+1/3.4+1/4.5+...+1/x.(x+1)].2=1999/2001
[1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1].2=1999/2001
(1/2-1/x+1).2=1999/2001
1/2-1/x+1=1999/2001:2=1999/2001.1/2=1999/4002
1/x+1=1/2-1999/4002
1/x+1=2001/4002-1999/4002==2/4002=1/2001
=>x+1=2001
=>x=2001-1=2000
Vậy x=2000