\(2^x+2^{x+3}=144\\ \Rightarrow2^x+2^x.2^3=144\\ \Rightarrow2^x.\left(1+8\right)=144\\ \Rightarrow2^x.9=144\\ \Rightarrow2^x=\dfrac{144}{9}\\ \Rightarrow2^x=16\\ \Rightarrow2^x=2^4\\ \Rightarrow x=4\)
\(2^x+2^{x+3}=144\)
\(2^x\cdot1+2^x\cdot2^3=144\)
\(2^x\cdot\left(1+2^3\right)=144\)
\(2^x\cdot9=144\)
\(2^x=\dfrac{144}{9}\)
\(2^x=16\)
`2^x=2^4`
`=>x=4`
2x+2x+3=144
<=>2x+2x*23=144
<=>2x(1+8)=144
<=>2x=16
<=>x=4
2x+2x+3=144⇒2x+2x.23=144⇒2x.(1+8)=144⇒2x.9=144⇒2x=1449⇒2x=16⇒2x=24⇒x=4