Đặt: \(n^2+3n+90=k^2\)
\(=>4n^2+12n+360=4k^2\\ =>\left(4n^2+12n+9\right)+351=4k^2\\ =>\left(2n+3\right)^2-4k^2=-351\\ =>\left(2n-2k+3\right)\left(2n+2k+3\right)=-351\)
Vì n là số tự nhiên nên: \(=>2n+2k+3>2n-2k+3\)
Ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}2n+2k+3=27\\2n-2k+3=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=2\\k=10\end{matrix}\right.\left(tm\right)\)
TH2: \(\left\{{}\begin{matrix}2n+2k+3=13\\2n-2k+3=-27\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-5\\k=10\end{matrix}\right.\left(ktm\right)\)
TH3: \(\left\{{}\begin{matrix}2n+2k+3=9\\2n-2k+3=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-9\\k=12\end{matrix}\right.\left(ktm\right)\)
TH4: \(\left\{{}\begin{matrix}2n+2k+3=39\\2n-2n+3=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=6\\k=12\end{matrix}\right.\left(tm\right)\)
TH5: \(\left\{{}\begin{matrix}2n+2k+3=3\\2n-2k+3=-117\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-30\\k=30\end{matrix}\right.\left(ktm\right)\)
TH6: \(\left\{{}\begin{matrix}2n+2k+3=117\\2n-2k+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{57}{2}\\k=\dfrac{57}{2}\end{matrix}\right.\) (ktm)
TH7: \(\left\{{}\begin{matrix}2n+2k+3=351\\2n-2k+3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{175}{2}\\k=88\end{matrix}\right.\left(ktm\right)\)
TH8: \(\left\{{}\begin{matrix}2n+2k+3=1\\2n-2k+3=-351\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-89\\k=88\end{matrix}\right.\)
Vậy n = 2 hoặc n = 6