\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
=> \(1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)
=> \(1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)
=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)
=> \(\frac{1}{x+1}=0\Rightarrow x\in\varnothing\)
Bài làm :
Ta có :
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
\(\Leftrightarrow1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}=0\)
=> Không tồn tại x