Gửi bạn nhé, bài này mình đã làm rồi , chúc bạn học tốt !

p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn
-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài
- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí
-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí
Vậy p=7
Xét với p=2 suy ra 3p2+4 = 3.4+4=16 ( 16 là hợp số) nên p=2 (loại)
Với p=3 suy ra 2p 2+3=2.9+3=21 ( 21 là hợp số) nên p = 3 ( loại)
Với p = 5 suy ra 2p2-1=2.25-1=49 ( 49 là hợp số ) nên p = 5 (loại)
Với p = 7 suy ra 2p2-1=2.49-1=97 (là số nguyên tố)
2p 2+3= = 2.49 + 3 = 101(là số nguyên tố)
3p2+4 =3.49+4=151 (là số nguyên tố)
p = 7( thỏa mãn)
Với p > 7: Xét các trường hợp
+ p=7k+1 suy ra 3p2 +4 = 147k2+42k+7 chia hết cho 7 và 147k2+42k+7 > 7 nên 3p2 +4 là hợp số
+ p=7k+2 (các bạn tự thay vào nhé)
+p=7k+3
+ p=7k + 4
p=7k + 5
+ p = 7k+6
Vậy p=7