( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Tìm các số thực x, y thỏa mãn:
a) 2x + 1 + (1 – 2y)i = 2 – x + (3y – 2)i
b) 4x + 3 + (3y – 2)i = y +1 + (x – 3)i
c) x + 2y + (2x – y)i = 2x + y + (x + 2y)i
Cho hàm số y=f(x) liên tục trên R và thỏa mãn f(x) + f( π 3 - x )= 1 2 sin x cos x ( 8 cos 3 x + 1 ) , ∀ x ∈ R Biết tích phân I= ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I= a b ln c d ; a , b , c , d ∈ Z và các phân số a b ; c d là các phân số tối giản. Tính S= a 3 + a b - c + d
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số f x = 1 1 + sinx
a) F(x) = 1 - cos x 2 + π 4
b) G(x) = 2 tan x 2
c) H(x) = ln(1 + sinx)
d) K(x) = 2 1 - 1 1 + tan x 2
Cho hàm số .
LG a
Xác định điểm thuộc đồ thị của hàm số đã cho biết rằng hoành độ của điểm là nghiệm của phương trình .
Trong các khẳng định sau đây, khẳng định nào sai?
A:
ii là số phức thỏa mãn i^2=-1i2=−1.
B:
Số phức 2-9i2−9i có phần thực là 2 và phần ảo là -9−9.
C:
Số phức 2-i2−i có phần thực là 2 và phần ảo là 11.
D:
Phương trình x^2+1 = 0x2+1=0 có hai nghiệm trên tập số phức \mathbb{C}C là ii và -i−i.
Cho hàm số y = x - 1 x + m , m ≠ - 1 , có đồ thị (C). Tìm m để đồ thị (C) nhận I (2;) làm tâm đối xứng.
A. m = 1 2
B. m = - 1 2
C. m = 2
D. m = -2
Giải các phương trình sau trên tập số phức:
a) (3 + 4i)x = (1 + 2i)(4 + i)
b) 2ix + 3 = 5x + 4i
c) 3x(2 – i) + 1 = 2ix(1 + i) + 3i
Cho hàm số f(x) liên tục trên R và thỏa mãn f ( x ) + f π 3 - x = 1 3 sin x cos x ( 8 cos 3 x + 1 ) . Biết tích phân I = ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I = a b ln c d và các phân số là các phân số tối giản. Tính S = a 3 + a b - c + d
A. S=6
B. S=3
C. S=5
D. S=7
Tìm x, biết ( 3 - 2 ) x = 3 + 2
A. x = 1 B. x = 2
C. x = 1/2 D. x = -1