Đáp án B
Ta có F x = ∫ e 2 x d x = e 2 x 2 + C
F 0 = 1 ⇒ C = 1 2 ⇒ F x = e 2 x 2 + 1 2
Đáp án B
Ta có F x = ∫ e 2 x d x = e 2 x 2 + C
F 0 = 1 ⇒ C = 1 2 ⇒ F x = e 2 x 2 + 1 2
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên R. Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. 3e
C. 20 e 2
D. - 1 e
Xác định giá trị a, b, c để hàm số F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của f ( x ) = ( x 2 - 3 x + 2 ) e - x
A. a = -1; b = 1; c = -1
B. a = -1; b = -5; c = -7
C. a = 1; b = -3; c = 2
D. a = 1; b = -1; c = 1
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết f(1)=e và ( x + 2 ) f ( x ) = x f ' ( x ) - x 3 , với mọi x thuộc R. Tính f(2).
A. 4 e 2 - 4 e + 4
B. 4 e 2 - 2 e + 1
C. 2 e 3 - 2 e + 2
D. 4 e 2 + 4 e - 4
Cho hai hàm số F(x)= ( x 2 + a x + b ) e - x v à f ( x ) = ( - x 2 + 3 x + 6 ) e - x . Tìm a và b để F(x) là một nguyên hàm của hàm số f(x)
A. a=1;b= -7
B. a= -1;b= -7
C. a= -1;b=7
D. a=1;b=7
Cho hàm số y=f(x) xác định và liên tục trên [1;e] thỏa mãn xf ' ( x ) = x [ f ( x ) ] 2 + 3 f ( x ) + 4 x và f(1) = -3. Tính f(e).
A. 5 2 e
B. - 5 2
C. - 5 2 e
D. 5 2
Cho hàm số f(x) liên tục trong đoạn [1;e], biết ∫ 1 e f ( x ) x d x = 1 , f(e) = 2. Tích phân ∫ 1 e f ' ( x ) ln x d x = ?
A. 1
B. 0
C. 2
D. 3
Một nguyên hàm F(x) của hàm số f ( x ) = e - x + e x 2 thỏa mãn F(0) = 1 là
Cho hàm số f(x) thỏa mãn f x + f ' x = e - x , ∀ x ∈ ℝ và f(0) = 2. Tất cả các nguyên hàm của f x e 2 x là
A. x - 2 e x + e x + C
B. x + 2 e x + e x + C
C. x - 1 e x + C
D. x + 1 e x + C
Tìm nguyên hàm F(x) của hàm số f ( x ) = 3 x 2 − e − x thỏa mãn F ( 0 ) = 3 .
A. F ( x ) = x 3 − e − x − 3
B. F ( x ) = x 3 + e − x + 2
C. F ( x ) = x 3 − e − x + 3
D. F ( x ) = x 3 + e − x − 2
Cho hàm số f(x) là một nguyên hàm của hàm số y = e x x ≥ 1 e - x x ≤ 1 với f(1)=e. Giá trị biểu thức f(-ln3)+f(-ln2)+f(ln2)+f(ln3) bằng
A. 2 e + 1 e
B. 3 e + 1 e - 10 3
C. 3 e + 1 e - 5 2
D. 3 e + 1 e + 21 2