Tìm họ nguyên hàm của hàm số lượng giác sau :
\(f\left(x\right)=\int\frac{4\sin x+3\cos x}{\sin x+2\cos x}dx\)
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Tìm nguyên hàm của hàm số f ( x ) = ( sin x + c o s x ) 2
A. ∫ f ( x ) d x = x + 1 2 c o s 2 x + C
B. ∫ f ( x ) d x = 1 2 c o s 2 x + C
C. ∫ f ( x ) d x = - 1 2 c o s 2 x + C
D. ∫ f ( x ) d x = x - 1 2 c o s 2 x + C
Biết F(x) là nguyên hàm của f(x) trên R thỏa mãn ∫ 1 e F ( x ) d ( ln x ) = 3 và F(e)=5. Tính ∫ 1 e ln x . f ( x ) d x
A. I=3
B. I=-3
C. I=2
D. I=-2
Tìm nguyên hàm của hàm số f(x) = sin (2x-1)
A. ∫ f ( x ) d x = 1 2 sin ( 2 x - 1 ) + C
B. ∫ f ( x ) d x = 1 2 c o s ( 2 x - 1 ) + C
C. ∫ f ( x ) d x = - 1 2 sin ( 2 x - 1 ) + C
D. ∫ f ( x ) d x = - 1 2 c o s ( 2 x - 1 ) + C
Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5
Nguyên hàm của hàm số f ( x ) = sin x . 2 − cos x là
A. F ( x ) = 2 3 ( 2 − cos x ) 2 − cos x + C
B. F ( x ) = − 3 2 ( 2 − cos x ) 2 − cos x + C
C. F ( x ) = − 1 2 2 − cos x + C
D. F ( x ) = 2 3 2 − cos x + C
Cho hàm số f ( x ) = x 3 - ( m - 1 ) x 2 + ( 5 - m ) x + m 2 - 5 . Có bao nhiêu giá trị nguyên của tham số m để hàm số g(x)=f(|x|) có 5 điểm cực trị?
A. 0.
B. 1
C. 2.
D. 3.
Biết rằng F(x) là một nguyên hàm của hàm số f(x) = sin(1-2x) và thỏa mãn F 1 2 = 1 . Mệnh đề nào sau đay là đúng?
A. F x = - 1 2 cos 1 - 2 x + 3 2
B. F x = cos 1 - 2 x
C. F x = cos 1 - 2 x + 1
D. F x = 1 2 cos 1 - 2 x + 1 2
Tìm các hàm số f(x) biết f ' ( x ) = cos x 2 + sin x 2
A. f ( x ) = sin x 2 + sin x 2 + C
B. f ( x ) = 1 2 + cos x + C
C. f ( x ) = - 1 2 + sin x + C
D. f ( x ) = sin x 2 + sin x + C