Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khiêm Nguyễn Gia

Tìm nghiệm nguyên \(\left(x;y\right)\) của phương trình \(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\)

Lê Song Phương
29 tháng 8 2023 lúc 13:49

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 


Các câu hỏi tương tự
Lê Minh Đức
Xem chi tiết
Thanh Dii
Xem chi tiết
Thanh Dii
Xem chi tiết
Yurika
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
kieu nhat minh
Xem chi tiết
kudo shinichi
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Lee Yeong Ji
Xem chi tiết