\(x^2=y^2+2y+13\)
\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)
\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)
\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)
\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)
do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)
từ đó ta có bẳng sau
x+y+1 | 12 | 6 | 4 |
x-y-1 | 1 | 2 | 3 |
x | 13/2(loại) | 4(TM) | 7/2(loại) |
y | 9/2(loại) | 1(TM) | -1/2(loại) |
vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1
Có:x^2=y^2+2y+13
=>x^2=(y^2+2y+1)+12
=>x^2=(y+1)^2+12
=>x^2-(y+1)^2=12
=>(x-y-1)(x+y+1)=12
vì x, y là các số nguyên dương
=>x-y-1<x+y+1
Xét các trường hợp
TH1:x-y-1=1 và x+y+1=12
=> x-y=2 và x+y=11
=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)
TH2: x-y-1=2 và x+y+1=6
=>x-y=3 và x+y=5
=>x=4 và y=3 (Thỏa mãn)
TH3:x-y-1=3 và x+y+1=4
=>x-y=4 và x+y=3(Loại vì x-y<x+y)
Vậy x=4, y=3
\(x^2=y^2+2y+13\)
\(x^2=y^2+2y+1+12\)
\(x^2=\left(y+1\right)^2+12\)
\(x^2-\left(y+1\right)^2=12\)
\(\left(x-y-1\right)\left(x+y+1\right)=12\)
Vì \(x,y\in N\Rightarrow x+y+1>x-y-1\)
Mà \(\left(x-y-1\right),\left(x+y+1\right)\inƯ\left(12\right)\)
Đến đây lập bảng là xog r bạn.
Có:\(x^2=y^2+2y+13\)
\(=>x^2=(y^2+2y+1)+12\)
\(=>x^2=(y+1)^2+12\)
\(=>x^2-(y+1)^2=12\)
\(=>(x-y-1)(x+y+1)=12\)
\(vì x, y \) là các số nguyên dương
\(=>x-y-1<x+y+1\)
Xét các trường hợp
\(TH1:x-y-1=1 và x+y+1=12\)
\(=> x-y=2 và x+y=11\)
\(=>x=6.5 và y=4.5 \)(Loại vì x,y là các số nguyên dương)
\(TH2: x-y-1=2 và x+y+1=6\)
\(=>x-y=3 và x+y=5\)
\(=>x=4 và y=3 \)(Thỏa mãn)
\(TH3:x-y-1=3 và x+y+1=4\)
\(=>x-y=4 và x+y=3\)(Loại vì \(x-y<x+y\))
Vậy \(x=4, y=3\)
tham khảo ạ
Có:x^2=y^2+2y+13
=>x^2=(y^2+2y+1)+12
=>x^2=(y+1)^2+12
=>x^2-(y+1)^2=12
=>(x-y-1)(x+y+1)=12
vì x, y là các số nguyên dương
=>x-y-1<x+y+1
Xét các trường hợp
TH1:x-y-1=1 và x+y+1=12
=> x-y=2 và x+y=11
=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)
TH2: x-y-1=2 và x+y+1=6
=>x-y=3 và x+y=5
=>x=4 và y=3 (Thỏa mãn)
TH3:x-y-1=3 và x+y+1=4
=>x-y=4 và x+y=3(Loại vì x-y<x+y)
Vậy x=4, y=3
Tham khảo :
x^2 = y^2 + 2y + 13
<=>x^2 -(y+1)^2 =12
(x-y-1)(x+y+1)=12
(x;y) =(±4;-3);(±4;1)
x,y nguyên dương
(x;y) =(4;1)
HT