\(PT\Leftrightarrow\left(x-\sqrt{2}y\right)\left(x+\sqrt{2}y\right)=1=1\cdot1=\left(-1\right)\left(-1\right)\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\sqrt{2}y=1\\x+\sqrt{2}y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-\sqrt{2}y=-1\\x+\sqrt{2}y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left(x;y\right)=\left\{\left(1;0\right);\left(-1;0\right)\right\}\)