a. \(\frac{n^2+1}{n+1}\in Z\)
Ta có : \(\frac{n^2+1}{n+1}=\frac{n\left(n+1\right)-n+1}{n+1}=n-1=0\)
\(\Leftrightarrow n=1\)
b. \(\frac{n^2-3}{n+2}\in Z\)
Ta có : \(\frac{n^2-3}{n+2}=\frac{n\left(n+2\right)-2n-3}{n+2}=n-\frac{2n+4-7}{n+2}=n-2-\frac{7}{n+2}\)
Để n^2 - 3 / n + 2 thuộc Z thì 7 / n + 2 thuộc Z, n thuộc Z
=> n + 2 thuộc { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 9 ; - 3 ; - 1 ; 5 }
a ) Để \(n^2+1⋮n+1\)
mà \(n\left(n+1\right)⋮n+1\)
\(\Rightarrow n\left(n+1\right)-n^2-1⋮n+1\)
\(\Rightarrow n^2+n-n^2-1⋮n+1\)
\(\Rightarrow n-1⋮n+1\)
\(\Rightarrow n+1-2⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
b ) \(n^2-3⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
\(\Rightarrow n\left(n+2\right)-n^2+3⋮n+2\)
\(\Rightarrow n^2+2n-n^2+3⋮n+2\)
\(\Rightarrow2n+3⋮n+2\)
\(\Rightarrow2n+4-1⋮n+2\)
\(\Rightarrow2\left(n+2\right)-1⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-1;-3\right\}\)
c ) \(n+3⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)⋮n^2+2\)
mà \(n^2+2⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)-n^2-2⋮n^2+2\)
\(\Rightarrow n^2+3n-n^2-2⋮n^2+2\)
\(\Rightarrow3n-2⋮n^2+2\)
mà \(3\left(n+3\right)⋮n^2+2\left(n+3⋮n^2+2\right)\)
\(\Rightarrow3\left(n+3\right)-3n+2⋮n^2+2\)
\(\Rightarrow3n+9-3n+2⋮n^2+2\)
\(\Rightarrow11⋮n^2+2\left(n\in Z\right)\)
\(\Rightarrow n^2+2\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow n^2=9\)
\(\Rightarrow\orbr{\begin{cases}n=3\\n=-3\end{cases}}\)
Đối chiều đề bài , ta có \(n=-3\) thỏa mãn .