Lời giải:
Gọi $d=ƯCLN(2n+1, 7n+2)$
$\Rightarrow 2n+1\vdots d; 7n+2\vdots d$
$\Rightarrow 7(2n+1)-2(7n+2)\vdots d$
$\Rightarrow 3\vdots d$
Để 2 số trên nguyên tố cùng nhau thì $(3,d)=1$
$\Rightarrow 2n+1\not\vdots 3\Rightarrow 2n-2\not\vdots 3$
$\Rightarrow 2(n-1)\not\vdots 3$
$\Rightarrow n-1\not\vdots 3$
$\Rightarrow n\neq 3k+1$ với $k$ tư nhiên.
Mà $10< n< 1000$ nên:
$n\neq \left\{13; 16; 19; 22;....; 997\right\}$