Đặt A = .....
A^2 = \(-x^2+4x+12+-x^2+2x+3+2\sqrt{\left(-x^2+4x+12\right)\left(-x^2+2x+3\right)}\)
= \(-2x^2+6x+15+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}\)
= \(\left(x+2\right)\left(3-x\right)+\left(6-x\right)\left(x+1\right)+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}+3\)
= \(l\sqrt{\left(x+2\right)\left(3-x\right)}+\sqrt{\left(x+1\right)\left(6-x\right)}l+3\ge3\)
=> P \(\ge\sqrt{3}\)
Vậy GTNN là .... tại x = 0