\(A=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge\frac{20.4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\)
Thiếu điều kiện x+y . Bổ sung điều kiện rồi thay giá trị của x+y vào A để tìm MIN.
\(A=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge\frac{20.4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\)
Thiếu điều kiện x+y . Bổ sung điều kiện rồi thay giá trị của x+y vào A để tìm MIN.
cho x,y> 0 và x+y\(\le\) 2
tìm min P = \(\frac{20}{x^2+y^2}+\frac{11}{xy}\)
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Tìm min
\(A=\frac{x^{20}}{y^{11}}+\frac{y^{20}}{z^{11}}+\frac{z^{20}}{x^{11}}\)
Các bn giúp mk bài này nhanh nhé! Mk đag cần gấp:
a,Tìm min của P= \(x^4-8x^3+28x^2-48x+35\)
b, Cho x,y>0 và x+y=6. Tìm min của Q= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{100}{xy}+xy\)
Cho x,y>0. Tìm min của
M=\(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
Cho x,y >0 và x + y <= 2. Tìm giá trị nhỏ nhất của biểu thức sau:
\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
CHO P=\(\frac{x^2-xy+y^2}{x^2+xy+y^2}\) TÌM MIN và MAX của P
\(A=\frac{x^2+y^2}{xy};vs.x^2+\frac{1}{y^2}=1\)
Tìm GTNN ( Min ) của A
cho x, y >0 và x+y\(\le\)2 tìm gtnn của bt
\(p=\frac{20}{x^2+y^2}+\frac{11}{xy}\)