Đặt \(y=x-1\Rightarrow x=y+1\)
Ta có \(A=\frac{\left(y+1\right)^2+\left(y+1\right)+1}{y^2}=\frac{y^2+3y+3}{y^2}=\frac{3}{y^2}+\frac{3}{y}+1\)
Lại đặt \(t=\frac{1}{y}\) , \(A=3t^2+3t+1=3\left(t+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Vậy A đạt giá trị nhỏ nhất bằng 1/4 khi t=-1/2 <=> y = -2 <=> x = -1