\(A=x^4-4x^3+9x^2-20+22\\ A=x^4-4x^3+4x^2+5x^2-20x+20+2\\ A=x^2\left(x^2-4x+4\right)+5\left(x^2-4x+4\right)\\ A=\left(x^2+5\right)\left(x-2\right)^2+2\)
Nhận xét:
\(x^2+5>0\\ \left(x-2\right)^2\ge0\\ \Rightarrow\left(x^2+5\right)\left(x-2\right)^2\ge0\\ \Rightarrow A=\left(x^2+5\right)\left(x-2\right)^2+2\ge2\)
Dấu "=" xảy ra khi:
\(\left(x^2+5\right)\left(x-2\right)^2=0\\ \Rightarrow\left(x-2\right)^2=0\left(vì.x^2+5>0\right)\\ \Rightarrow x-2=0\\ x=2\)
Vậy MinA = 2 khi x = 2