Ta có M2 = 8 + 2√[(x - 1)(9 - x)] <= 8 + (x - 1) + (9 - x) = 8 + 8 = 16
=> M <= 4 đạt GTLN tại x = 5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ta có M2 = 8 + 2√[(x - 1)(9 - x)] <= 8 + (x - 1) + (9 - x) = 8 + 8 = 16
=> M <= 4 đạt GTLN tại x = 5
tìm Max: A=\(\frac{\sqrt{x}-5}{\sqrt{x}+5}\)
cho bt : M=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}.....\)
a) rút gọn M
b)tìm x để M=\(\frac{1}{3}\)
c)tìm Max P=M - 9\(\sqrt{x}\)
Cho \(M=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{x\sqrt{x}-1}\)
a)Tìm ĐKXĐ,rút gọn
b)tim max của M
1. Tìm max
\(M=\dfrac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
2. Cho a,b,c >0 và a+b+c=\(\sqrt{2}\)
Tìm max \(N=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Tìm max của M = \(\frac{\sqrt{x-2017}}{x+2}+\frac{\sqrt{x-2018}}{x}\)
P= \((\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}). \dfrac{(1-x)^2}{2}\)
a) tìm Tập xác định, rút gọn P
b) c/m nếu 0<x<1=> P>0
c) Tìm P max
Tìm max \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) (x là số tự nhiên, x>9)
Bài 4:
Cho biểu thức: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm đkxđ của M và rút gọn
b) Tìm x \(\in Z\) để M \(\in Z\)
Bài 4:
Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm đkxđ của M và rút gọn
b) Tìm x thuộc Z để M thuộc Z
Em cần gấp :<