Đặt A = -x2 + 2xy - 4y2 + 2x + 10y - 8
= -[(x2 - 2xy + y2) - 2(x - y) + 1] - (3y2 - 12y + 12) + 5
= -[(x - y - 1)2 + 3(y - 2)2] + 5\(\le\)5
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy Max A = 5 <=> x = 3 ; y = 2
-x2 + 2xy - 4y2 + 2x + 10y - 8
= -( x2 - 2xy + y2 - 2x + 2y + 1 ) - ( 3y2 - 12y + 12 ) + 5
= -[ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] - 3( y2 - 4y + 4 ) + 5
= -[ ( x - y )2 - 2( x - y ) + 12 ] - 3( y - 2 )2 + 5
= -( x - y - 1 )2 - 3( y - 2 )2 + 5
Ta có : \(\hept{\begin{cases}-\left(x-y-1\right)^2\\-3\left(y-2\right)^2\end{cases}}\le0\forall x,y\Rightarrow-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy GTLN của biểu thức = 5 <=> x = 3 ; y = 2